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Abstract 
Deep neural network is a rich family of methods, 

comprising of neural networks, probabilistic models, and 

different types of unsupervised and supervised feature 

learning algorithms. In the recent years deep learning 

methods have been applied in several fields, with 

computer vision being one of the most important 

application.In this paper, we propose Deep Cconvolutional 

Neural Nnetwork (DCNN) architecture.  The main 

objective of this architecture is toimprove utilization of the 

computing resources inside the network. In this study, we 

increased the depth and width of the network while 

computational budget is kept unchanged. The architectural 

decisions were based on the Hebbian principle in order to 

optimize quality. 

 

1. Introduction 

Deep learning allows computational models of multiple 

processing layers to learn and represent data with multiple 

levels of abstraction mimicking how the brain perceives 

and understands multimodal information, thus implicitly 

capturing intricate structures of large‐scale data.In the last 

three years, our object classification and de- tection 

capabilities have dramatically improved due to ad- vances 

in deep learning and convolutional networks [10]. One 

encouraging news is that most of this progress is not just 

the result of more powerful hardware, larger datasets 

andbiggermodels,butmainlyaconsequenceofnewideas, 

algorithms and improved network architectures. No new 

data sources were used, for example,  by the top  entries  

in the ILSVRC 2014 competition besides the classification 

datasetofthesamecompetitionfordetectionpurposes.Our 

GoogLeNet submission to ILSVRC 2014 actually uses 12 

times fewer parameters than the winning architecture of  

Krizhevsky et al [9] from two years ago, while being sig- 

nificantly more accurate. On the object detection front, the 

biggest gains have not come from naive application ofbig-

gerandbiggerdeepnetworks,butfromthesynergyofdeep 

architecturesandclassicalcomputervision,liketheR-CNN 

algorithm by Girshick et al[6]. 

Another notable factor is that with the ongoing traction 

of mobile and embedded computing, the efficiency of our 

algorithms–especiallytheirpowerandmemoryuse–gains 

importance. It is noteworthy that the considerationsleading 

tothedesignofthedeeparchitecturepresentedinthispaper 

included this factor rather than having a sheer fixation on 

accuracynumbers.Formostoftheexperiments,themodels 

weredesignedtokeepacomputationalbudgetof1.5billion 

multiply-adds at inference time, so that the they do not end 

uptobeapurelyacademiccuriosity,butcouldbeputtoreal 

world use, even on large datasets, at a reasonablecost. 

In this paper, we will focus on an efficient deep neural 

network architecture for computer vision, codenamed In- 

ception, which derives its name from the Network in net- 

workpaperbyLinetal[12]inconjunctionwiththefamous “we 

need to go deeper” internet meme [1]. In our case, the 

word “deep” is used in two different meanings: first of all, 

in the sense that we introduce a new level of organization 

in the form of the “Inception module” and also in the more 

directsenseofincreasednetworkdepth.Ingeneral,onecan 

view the Inception model as a logical culmination of [12] 

while taking inspiration and guidance from the theoretical 

work by Arora et al [2]. The benefits of the architectureare 

experimentally verified on the ILSVRC 2014classification 

anddetectionchallenges,whereitsignificantlyoutperforms 

the current state of theart. 

 

2. Related Work 

Starting with LeNet-5 [10], convolutional neural net- 

works (CNN) have typically had a standard structure – 

stacked convolutional layers (optionally followed by con- 
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trast normalization and max-pooling) are followed by one 

ormorefully-connectedlayers.Variantsofthisbasicdesign are 

prevalent in the image classification literature and have 

yieldedthebestresultsto-dateonMNIST,CIFARandmost 

notably on the ImageNet classification challenge [9, 21]. 

For larger datasets such as Imagenet, the recent trend has 

been to increase the number  of  layers  [12]  and  layer 

size[21,14],whileusingdropout[7]toaddresstheproblem 

ofoverfitting. 

Despite concerns that max-pooling layers result in loss 

ofaccuratespatialinformation,thesameconvolutionalnet- 

work architecture as [9] has also been successfully em- 

ployedforlocalization[9,14],objectdetection[6,14,18,5] and 

human pose estimation[19]. 

Inspired by a neuroscience model of the primate visual 

cortex, Serre et al. [15] used a series of fixed Gabor filters 

ofdifferentsizestohandlemultiplescales.Weuseasimilar 

strategy here. However, contrary to the fixed 2-layer deep 

model of [15], all filters in the Inception architecture are 

learned. Furthermore, Inception layers are repeated many 

times, leading to a 22-layer deep model in the case of the 

GoogLeNetmodel. 

Network-in-Network is an approach proposed by Lin et 

al. [12] in order to increase the representational power of 

neural networks. In their model, additional 1 1 convolu- 

tional layers are added to the network, increasing its depth. 

We use this approach heavily in our architecture. However, 

in our setting, 1 1 convolutions have dual purpose: most 

critically,theyareusedmainlyasdimensionreductionmod- 

ules to remove computational bottlenecks, that would oth- 

erwise limit the size of our networks. This allows for not 

justincreasingthedepth,butalsothewidthofournetworks 

without a significant performancepenalty. 

Finally, the current state of the art for object detectionis 

theRegionswithConvolutionalNeuralNetworks(R-

CNN)methodbyGirshicketal.[6].R-

CNNdecomposestheover- all detection problem into two 

subproblems: utilizing low- level cues such as color and 

texture in order to generateob- ject location proposals in a 

category-agnostic fashion and using CNN classifiers to 

identify object categories at those locations. Such a two 

stage approach leverages the accu- racy of bounding box 

segmentation with low-level cues, as 

wellasthehighlypowerfulclassificationpowerofstate-of- 

the-art CNNs. We adopted a similar pipeline in our detec- 

tion submissions, but have explored enhancements in both 

stages, such as multi-box [5] prediction for higher object 

bounding box recall, and ensemble approaches for better 

categorization of bounding boxproposals. 

3. Motivation and High LevelConsiderations 

The most straightforward way of improving the perfor- 

mance of deep neural networks is by increasing their size. 

Thisincludesbothincreasingthedepth–thenumberofnet- 

 

  
 
 

Figure 1: Two distinct classes from the 1000 classes of the 

ILSVRC 2014 classification challenge. Domain knowledge is re- 

quired to distinguish between theseclasses. 

 

work levels – as well as its width: the number of units at 

each level. This is an easy and safe way of training higher 

quality models, especially given the availability of a large 

amount of labeled training data. However, this simple solu- 

tion comes with two majordrawbacks. 

Bigger size typically means a larger number of parame- 

ters,whichmakestheenlargednetworkmorepronetoover- 

fitting, especially if the number of labeled examples in the 

trainingsetislimited.Thisisamajorbottleneckasstrongly 

labeleddatasetsarelaboriousandexpensivetoobtain,often 

requiring expert human raters to distinguish between vari- 

ousfine-grainedvisualcategoriessuchasthoseinImageNet 

(even in the 1000-class ILSVRC subset) as shown in Fig- 

ure1. 

The other drawback of uniformly increased network 

size is the dramatically increased use of computational re- 

sources. For example, in a deep vision network, if two 

convolutional layers are chained, any uniform increase in 

the number of their filters results in a quadratic increase of 

computation. If the added capacity is used inefficiently(for 

example, if most weights end up to be close to zero), then 

much of the computation is wasted. As the computational 

budget is always finite, an efficient distribution of comput- 

ing resources is preferred to an indiscriminate increase of 

size,evenwhenthemainobjectiveistoincreasethequality 

ofperformance. 

Afundamentalwayofsolvingbothoftheseissueswould 

betointroducesparsityandreplacethefullyconnectedlay- ers 

by the sparse ones, even inside the convolutions. Be- sides 

mimicking biological systems, this would also have 

theadvantageoffirmertheoreticalunderpinningsduetothe 

groundbreaking work of Arora et al. [2]. Their main re- 

sultstatesthatiftheprobabilitydistributionofthedatasetis 

representable by a large, very sparse deep neural network, 

then the optimal network topology can be constructedlayer 

after layer by analyzing the correlation statistics of the pre- 

ceding layer activations and clustering neurons with highly 

correlated outputs. Although the strict mathematical proof 

requires very strong conditions, the fact that thisstatement 
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resonates with the well knownHebbian principle –neurons 

that fire together, wire together – suggests that the under- 

lying idea is applicable even under less strict conditions, in 

practice. 

Unfortunately, today’s computing infrastructures are 

very inefficient when it comes to numerical calculation on 

non-uniform sparse data structures. Even if the number of 

arithmetic operations is reduced by 100 , the overhead of 

lookups and cache misses would dominate: switching to 

sparse matrices might not pay off. The gap is widened yet 

further by the use of steadily improving and highly tuned 

numerical libraries that allow for extremely fast dense ma- 

trix multiplication, exploiting the minute details of the un- 

derlying CPU or GPU hardware [16, 9]. Also,non-uniform 

sparse models require more sophisticated engineering and 

computing infrastructure. Most current vision oriented ma- 

chinelearningsystemsutilizesparsityinthespatialdomain 

justbythevirtueofemployingconvolutions.However,con- 

volutions are implemented as collections of dense connec- 

tions to the patches in the earlier layer. ConvNets have tra- 

ditionally used random and sparse connection tables in the 

feature dimensions since [11] in order to break the sym- 

metry and improve learning, yet the trend changed back to 

full connections with [9] in order to further optimize par- 

allel computation. Current state-of-the-art architectures for 

computer vision have uniform structure. The large number 

of filters and greater batch size allows for the efficient use 

of densecomputation. 

This raises the question of whether there is any hope for 

a next, intermediate step:  an architecture that makes use  

of filter-level sparsity, as suggested by the theory, but ex- 

ploits our current hardware by utilizing computations on 

dense matrices. The vast literature on sparse matrix com- 

putations (e.g. [3]) suggests that clustering sparse matrices 

into relatively dense submatrices tends to give competitive 

performance for sparse matrix multiplication. It does not 

seemfar-fetchedtothinkthatsimilarmethodswouldbeuti- 

lized for the automated construction of non-uniform deep- 

learning architectures in the nearfuture. 

The Inception architecture started out as a case studyfor 

assessingthehypotheticaloutputofasophisticatednetwork 

topology construction algorithm that tries to approximate a 

sparsestructureimpliedby[2]forvisionnetworksandcov- 

ering the hypothesized outcome by dense, readily available 

components. Despite being a highly speculative undertak- 

ing, modest gains were observed early on when compared 

with reference networks based on [12]. With a bit of tun- 

ing the gap widened and Inception proved to be especially 

useful in the context of localization and object detection as 

the base network for [6] and [5]. Interestingly, while most 

of the original architectural choices have been questioned 

and tested thoroughly in separation, they turned out to be 

close to optimal locally. One must be cautious though:al- 

though the Inception architecture has become a success for 

computer vision, it is still questionable whether this can be 

attributedtotheguidingprinciplesthathaveleadtoitscon- 

struction. Making sure of this would require a much more 

thorough analysis andverification. 

4. ArchitecturalDetails 

ThemainideaoftheInceptionarchitectureistoconsider 

howanoptimallocalsparsestructureofaconvolutionalvi- sion 

network can be approximated and covered by readily 

availabledensecomponents.Notethatassumingtranslation 

invariancemeansthatournetworkwillbebuiltfromconvo- 

lutional building blocks. All we need is to find the optimal 

local construction and to repeat it spatially. Arora et al. [2] 

suggestsalayer-bylayerconstructionwhereoneshouldan- 

alyze the correlation statistics of the last layer and cluster 

them into groups of units with high correlation. Theseclus- 

ters form the units of the next layer and are connected to 

the units in the previous layer. We assume that each unit 

from an earlier layer corresponds to some region of the in- 

put image and these units are grouped into filter banks. In 

thelowerlayers(theonesclosetotheinput)correlatedunits 

would concentrate in local regions. Thus, we would end up 

with a lot of clusters concentrated in a single region and 

they can be covered by a layer of 1 1 convolutions in the 

next layer, as suggested in [12]. However, one can also 

expectthattherewillbeasmallernumberofmorespatially 

spreadoutclustersthatcanbecoveredbyconvolutionsover 

larger patches, and there will be a decreasing number of 

patches over larger and larger regions. In order to avoid 

patch-alignment issues, current incarnations of the Incep- 

tion architecture are restricted to filter sizes 1 1, 3 3and 

5 5; this decision was based more on convenience rather 

thannecessity.Italsomeansthatthesuggestedarchitecture is a 

combination of all those layers with their output filter 

banks concatenated into a single output vector forming the 

input of the next stage. Additionally, since pooling opera- 

tions have been essential for the success of current convo- 

lutionalnetworks,itsuggeststhataddinganalternativepar- 

allelpoolingpathineachsuchstageshouldhaveadditional 

beneficial effect, too (see Figure2(a)). 

Asthese“Inceptionmodules”arestackedontopofeach 

other, their output correlation statistics are bound to vary: 

as features of higher abstraction are captured by higherlay- 

ers, their spatial concentration is expected to decrease.This 

suggests that the ratio of 3 3 and 5 5 convolutionsshould 

increase as we move to higherlayers. 

One big problem with the above modules, at least inthis 

nä ıveform, is that even a modest number of 5 5 convo- 

lutions can be prohibitively expensive on top of a convolu- 

tionallayerwithalargenumberoffilters.Thisproblembe- 

comes even more pronounced once pooling units areadded 

to the mix: the number of output filters equals to the 

number of filters in the previous stage. The merging of 
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output of the pooling layer with outputs of the 

convolutional lay- ers would lead to an inevitable 

increase in the number of outputs from stage to stage. 

While this architecture might cover the optimal sparse 

structure, it would do it very inef- ficiently, leading to 

a computational blow up within a few stages. 

This leads to the second idea of the Inception architec- 

ture: judiciously reducing dimension wherever the compu- 

tational requirements would increase too much otherwise. 

This is based on the success of embeddings: even low di- 

mensionalembeddings might contain a lot of information 

about a relatively large image patch. However, embed- 

dings represent information in a dense, compressed form 

and compressed information is harder to process. The rep- 

resentationshouldbekeptsparseatmostplaces(asrequired by 

the conditions of [2]) and compress the signals only 

whenevertheyhavetobeaggregatedenmasse.Thatis, 

1 1 convolutions are used to compute reductions before 

the expensive 3 3 and 5 5 convolutions. Besides being 

usedasreductions,theyalsoincludetheuseofrectifiedlin- 

earactivationmakingthemdual-purpose.Thefinalresultis 

depicted in Figure2(b). 

In general, an Inception network is a network consist- 

ing of modules of the above type stacked upon each other, 

with occasional max-pooling layers with stride 2 to halve 

the resolution of the grid. For technical reasons (memory 

efficiency during training), it seemed beneficial to start us- 

ing Inception modules only at higher layers while keeping 

thelowerlayersintraditionalconvolutionalfashion.Thisis 

notstrictlynecessary,simplyreflectingsomeinfrastructural 

inefficiencies in our currentimplementation. 

A useful aspect of this architecture is that it allows 

for increasing the number of units at each stage 

significantly without an uncontrolled blow-up in 

computational com- plexity at later stages. This is 

achieved by the ubiquitous 

useofdimensionalityreductionpriortoexpensiveconvolu- 

tions with larger patch sizes. Furthermore, the design 

fol- lows the practical intuition that visual information 

should be processed at various scales and then 

aggregated so that 

thenextstagecanabstractfeaturesfromthedifferentscales 

simultaneously. 

The improved use of computational resources 

allowsfor increasing both the width of each stage as 

well as the num- 

berofstageswithoutgettingintocomputationaldifficulties. 

One can utilize the Inception architecture to create 

slightly inferior, but computationally cheaper versions 

of it. We have found that all the available knobs and 

levers allowfor a controlled balancing of 

computational resourcesresulting in networks that are 

3 10 faster than similarly perform- ing networks with 

non-Inception architecture, however this requires 

careful manual design at thispoint. 

5. GoogLeNet 

By the“GoogLeNet” name we refer to the particular in- 

carnation of the Inception architecture used in our submis- 

sion for the ILSVRC 2014 competition. We also used one 

deeper and wider Inception network with slightly superior 

quality,butaddingittotheensembleseemedtoimprovethe 

resultsonlymarginally.Weomitthedetailsofthatnetwork, as 

empirical evidence suggests that the influence of the ex- 

act architectural parameters is relatively minor. Table 1 il- 

lustratesthemostcommoninstanceofInceptionusedinthe 

competition. This network (trained with different image- 

patchsamplingmethods)wasusedfor6outofthe7models in 

ourensemble. 

All the convolutions, including those inside the Incep- 

tion modules, use rectified linear activation. The size ofthe 

receptivefieldinournetworkis224224intheRGBcolor space 

with zero mean. “#3 3 reduce” and “#5 5 reduce” stands 

for the number of 1 1 filters in the reduction layer used 

before the 3 3 and 5 5 convolutions.  One can see  the 

number of 1 1 filters in the projection layer after the built-

in max-pooling in the pool proj column. All these re- 

duction/projection layers use rectified linear activation as 

well. 

Thenetworkwasdesignedwithcomputationalefficiency 

and practicality in mind, so that inference can be run onin- 

dividual devices including even those with limited compu- 

tational resources, especially with low-memoryfootprint. 
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type 
patch size/ 

stride 
output 

size 
depth #1×

1 

#3×3 
reduce #3×

3 

#5×5 
reduce #5×

5 

pool 
proj 

params ops 

convolution 7×7/2 112×112×6

4 

1       2.7K 34M 

max pool 3×3/2 56×56×64 0         

convolution 3×3/1 56×56×192 2  64 192    112K 360M 

max pool 3×3/2 28×28×192 0         

inception (3a)  28×28×256 2 64 96 128 16 32 32 159K 128M 

inception (3b)  28×28×480 2 128 128 192 32 96 64 380K 304M 

max pool 3×3/2 14×14×480 0         

inception (4a)  14×14×512 2 192 96 208 16 48 64 364K 73M 

inception (4b)  14×14×512 2 160 112 224 24 64 64 437K 88M 

inception (4c)  14×14×512 2 128 128 256 24 64 64 463K 100M 

inception (4d)  14×14×528 2 112 144 288 32 64 64 580K 119M 

inception (4e)  14×14×832 2 256 160 320 32 128 128 840K 170M 

max pool 3×3/2 7×7×832 0         

inception (5a)  7×7×832 2 256 160 320 32 128 128 1072K 54M 

inception (5b)  7×7×1024 2 384 192 384 48 128 128 1388K 71M 

avg pool 7×7/1 1×1×1024 0         

dropout (40%)  1×1×1024 0         

linear  1×1×1000 1       1000K 1M 

softmax  1×1×1000 0         

 

Table 1: GoogLeNet incarnation of the Inception architecture. 
The network is 22 layers deep when counting only layers 

withparameters(or27layersifwealsocountpooling).The 

overallnumberoflayers(independentbuildingblocks)used 

for the construction of the network is about 100. The exact 

number depends on how layers are counted by the machine 

learning infrastructure. The use of average pooling before 

theclassifierisbasedon[12],althoughourimplementation 

hasanadditionallinearlayer.Thelinearlayerenablesusto 

easily adapt our networks to other label sets, however it is 

usedmostlyforconvenienceandwedonotexpectittohave a 

major effect. We found that a move from fully connected 

layers to average pooling improved the top-1 accuracy by 

about 0.6%, however the use of dropout remainedessential 

even after removing the fully connectedlayers. 

Given relatively large depth of the network, the ability 

to propagate gradients back through all the layers in an 

effective manner was a concern. The strong performance 

of shallower networks on this task suggests that the fea- 

tures produced by the layers in the middle of the network 

should be very discriminative. By adding auxiliary classi- 

fiers connected to these intermediate layers, discrimination 

in the lower stages in the classifier was expected. This was 

thought to combat the vanishing gradient problem while 

providing regularization.  These classifiers take the form  of 

smaller convolutional networks put on top of the out- put of 

the Inception (4a) and (4d) modules. During train- ing, their 

loss gets added to the total loss of the network with a discount 

weight (the losses of the auxiliary classi- fiers were weighted 

by 0.3). At inference time, these auxil- 

iarynetworksarediscarded.Latercontrolexperimentshave shown 

that the effect of the auxiliary networks is relatively minor 

(around 0.5%) and that it required only one of them to achieve 

the sameeffect. 

The exact structure of the extra network on the side, in- 

cluding the auxiliary classifier, is as follows: 

• An average pooling layer with 5×5 filter size and 

stride 3, resulting in an 4×4×512 output for the(4a), 

and 4×4×528for the (4d)stage. 

• A 1 1 convolution with 128 filters for dimension re- 

duction and rectified linearactivation. 

• A fully connected layer with 1024 units and rectified 

linearactivation. 

• A dropout layer with 70% ratio of droppedoutputs. 
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• A linear layer with softmax loss as the classifier (pre- 

dictingthesame1000classesasthemainclassifier,but removed 

at inferencetime). 

A schematic view of the resulting network is depictedin 

Figure3. 

 

6. TrainingMethodology 
GoogLeNet networks were trained using the DistBe- lief [4] 

distributed machine learning system using mod-  est amount 

of model and data-parallelism. Although we used a CPU 

based implementation only, a rough estimate suggests that 

the GoogLeNet network could be trained to convergence 

using few high-end GPUs within a week, the main limitation 

being the memory usage. Our training used asynchronous 

stochastic gradient descent with 0.9 momen- 

tum[17],fixedlearningrateschedule(decreasingthelearn- ing 

rate by 4% every 8 epochs). Polyak averaging [13] was used 

to create the final model used at inferencetime. 

Image sampling methods have changed substantially over the 

months leading to the competition, and already 

convergedmodelsweretrainedonwithotheroptions,some- 

times in conjunction with changed hyperparameters, such as 

dropout and the learning rate. Therefore, it is hard to give a 

definitive guidance to the most effective single way 

totrainthesenetworks.Tocomplicatemattersfurther,some 

ofthemodelsweremainlytrainedonsmallerrelativecrops, others 

on larger ones, inspired by [8]. Still, one prescrip- tion that 

was verified to work very well after the competi- tion, 

includes sampling of various sized patches of the im- age 

whose size is distributed evenly between 8% and100% of the 

image area with aspect ratio constrained to the inter- val[ 3, 
4]. Also, we found that the photometricdistortions  

 

 

of Andrew Howard [8] were useful to combat overfitting to 

the imaging conditions of training data. 

 

7. ILSVRC 2014 Classification Challenge 

Setup andResults 

The ILSVRC 2014 classification challenge involves the 

taskofclassifyingtheimageintooneof1000leaf-nodecat- 

egories in the Imagenet hierarchy. There are about 1.2 mil- 

lion images for training, 50,000 for validation and 100,000 

images for testing. Each image is associated with one 

ground truth category, and performance is measured based 

on the highest scoring classifier predictions. Two num- 

bers are usually reported: the top-1 accuracy rate, which 

compares the ground truth against the first predicted class, 

and the top-5 error rate, which compares the ground truth 

against the first 5 predicted classes: an image is deemed 

correctly classified if the ground truth is among the top-5, 

regardless of its rank in them. The challenge uses the top-

5error rate for rankingpurposes. 

We participated in the challenge with no external data used for 

training. In addition to the training techniques 

aforementionedinthispaper,weadoptedasetoftechniques 

duringtestingtoobtainahigherperformance,whichwede- 

scribenext. 

1. We independently trained 7 versions of the same 

GoogLeNet model (including one wider version), and 

performed ensemble prediction with them. These models 

were trained with the same initialization (even with the 

same initial weights, due to an oversight) and learning 

rate policies. They differed only in sampling 

methodologies and the randomized input imageorder. 

2. Duringtesting,weadoptedamoreaggressivecropping 

approach than that of Krizhevsky et al. [9]. Specif- ically, 

we resized the image to 4 scales where the shorter 

dimension (height or width) is 256, 288, 320 and 352 

respectively, take the left, center and right square of these 

resized images (in the case of portrait images, we take the 

top, center and bottom squares). For each square, we then 

take the 4 corners and the center 224 224 crop as well as 

the square resizedto 

224 224, and their mirrored versions. This leads to 

4 3 6 2 = 144 crops per image. A similar ap- proach 

was used by Andrew Howard [8] in the pre- vious 

year’s entry, which we empirically verified to 

performslightlyworsethantheproposedscheme.We 

notethatsuchaggressivecroppingmaynotbeneces- 

saryinrealapplications,asthebenefitofmorecrops 

becomesmarginalafterareasonablenumberofcrops 

arepresent(aswewillshowlateron). 

3. The softmax probabilities are averaged over multiple 

crops and over all the individual classifiers to obtain the 

final prediction. In our experiments we analyzed 

alternative approaches on the validation data, such as 

maxpoolingovercropsandaveragingoverclassifiers, but 

they lead to inferior performance than the simple 

averaging. 

In the remainder of this paper, we analyze the multiple 

factorsthatcontributetotheoverallperformanceofthefinal 

submission. 

Our final submission to the challenge obtains a top-5 er- 

rorof6.67%onboththevalidationandtestingdata,ranking the first 

among other participants. This is a 56.5% relative reduction 

compared to the SuperVision approach in 2012, and about 

40% relative reduction compared to the previous year’s best 

approach (Clarifai), both of which usedexternal data for 

training the classifiers. Table 2 shows the statistics of some of 

the top-performing approaches over the past 3 years. 

We also analyze and report the performance of multiple 

testing choices, by varying the number of models and the 
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Team Year Place Error 

(top-5) 

Uses external 

data 

SuperVision 2012 1st 16.4% no 

SuperVision 2012 1st 15.3% Imagenet22k 

Clarifai 2013 1st 11.7% no 

Clarifai 2013 1st 11.2% Imagenet22k 

MSRA 2014 3rd 7.35% no 

VGG 2014 2nd 7.32% no 

GoogLeNet 2014 1st 6.67% no 

Table 2: Classification performance. 

 

Number 

of models 

Number 

of Crops 

Cost Top-5 

error 

compared 

to base 

1 1 1 10.07% base 

1 10 10 9.15% -0.92% 

1 144 144 7.89% -2.18% 

7 1 7 8.09% -1.98% 

7 10 70 7.62% -2.45% 

7 144 1008 6.67% -3.45% 

Table 3: GoogLeNet classification performance break 

down. 

 

number of crops used when predicting an image in 

Table 3. When we use one model, we chose the one 

with the lowest top-1 error rate on the validation data. 

All numbers are re- 

portedonthevalidationdatasetinordertonotoverfitto the 

testing datastatistics. 

8. ILSVRC 2014 Detection Challenge 

Setup andResults 

The ILSVRC detection task is to produce bounding 

boxesaroundobjectsinimagesamong200possibleclasses. 

Detected objects count as correct if they match the 

class   of the groundtruth and their bounding boxes 

overlap by at least 50% (using the Jaccard index). 

Extraneous detections count as false positives and are 

penalized. Contrary to the 

classificationtask,eachimagemaycontainmanyobjectsor 

none, and their scale may vary. Results are reported 

using the mean average precision (mAP). The 

approach taken by 

GoogLeNetfordetectionissimilartotheR-CNNby[6],but 

isaugmentedwiththeInceptionmodelastheregionclassi- 

fier. Additionally, the region proposal step is improved 

by combining the selective search [20] approach with 

multi- box [5] predictions for higher object bounding box 

recall. In order to reduce the number of false positives, 

thesuper- 
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× 

Team Year Place mAP external data ensemble approach 

UvA-Euvision 2013 1st 22.6% none ? Fisher vectors 

Deep Insight 2014 3rd 40.5% ImageNet1k 3 CNN 

CUHK DeepID-Net 2014 2nd 40.7% ImageNet1k ? CNN 

GoogLeNet 2014 1st 43.9% ImageNet1k 6 CNN 
 

Table 4: Comparison of detection performances. Unreported values are noted with question marks. 

 

pixel size was increased by 2 . This halves the proposals 

comingfromtheselectivesearchalgorithm.Weaddedback 200 

region proposals coming from multi-box [5] resulting, in 

total, in about 60% of the proposals used by [6], while 

increasing the coverage from 92% to 93%. The overall ef- 

fect of cutting the number of proposals with increased cov- 

erage is a 1% improvement of the mean average precision 

for the single model case. Finally, we use an ensemble of6 

GoogLeNets when classifying each region. This leads to 

an increase in accuracy from 40% to 43.9%. Note that con- 

trary to R-CNN, we did not use bounding box regression 

due to lack oftime. 

We first report the top detection results and show the 

progress since the first edition of the detection task. Com- 

pared to the 2013 result, the accuracy has almost doubled. 

The top performing teams all use convolutional networks. 

We report the official scores in Table 4 and common strate- 

gies for each team: the use of external data, ensemblemod- 

els or contextual models. The external data is typically the 

ILSVRC12 classification data for pre-training a model that 

islaterrefinedonthedetectiondata.Someteamsalsomen- tion 

the use of the localization data. Since a good portion of the 

localization task bounding boxes are not included in the 

detection dataset, one can pre-train a general bounding box 

regressor with this data the same way classification is used 

for pre-training. The GoogLeNet entry did not use the 

localization data forpretraining. 

InTable5,wecompareresultsusingasinglemodelonly. The 

top performing model is by Deep Insight and surpris- 

inglyonly improves by 0.3 points with an ensemble of 3 

models while the GoogLeNet obtains significantlystronger 

results with theensemble. 

 

9. Conclusions 

Ourresultsyieldasolidevidencethatapproximatingthe 

expectedoptimalsparsestructurebyreadilyavailabledense 

buildingblocksisaviablemethodforimprovingneuralnet- 

works for computer vision. The main advantage of this 

method is a significant quality gain at a modest increase  

of computational requirements compared to shallower and 

narrowerarchitectures. 

Our object detection work was competitive despite not 

 

Team mAP Contextual 

model 

Bounding box 

regression 

Trimps- 

Soushen 

31.6% no ? 

Berkeley 

Vision 

34.5% no yes 

UvA- 

Euvision 

35.4% ? ? 

CUHK 

DeepID- 

Net2 

37.7% no ? 

GoogLeNet 38.02% no no 

Deep 

Insight 

40.2% yes yes 

Table 5: Single model performance for detection. 

 

 
utilizing context nor performing bounding box regression, 

suggesting yet further evidence of the strengths of the In- 

ception architecture. 

For both classification and detection, it is expected that 

similar quality of result can be achieved by much more ex- 

pensive non-Inception-type networks of similar depth and 

width. Still, our approach yields solid evidence that mov- 

ing to sparser architectures is feasible and useful idea in 

general. This suggest future work towards creating sparser 

and more refined structures in automated ways on thebasis 

of [2], as well as on applying the insights of the Inception 

architecture to otherdomains. 

 
References 

[1] Know  your  meme: We need to godeeper. 

http://knowyourmeme.com/memes/we-need-to-go-deeper. 

Accessed: 2014-09-15. 

[2] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable 

boundsforlearningsomedeeprepresentations. CoRR, 

abs/1310.6343,2013. 

http://knowyourmeme.com/memes/we-need-to-go-deeper


International Journal of Engineering Sciences Paradigms and Researches: (Vol. 25, Issue 01) and (Publishing Month: Oct 2015) 

www.ijesonline.com (ISSN: 2319-6564) 
43  
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